6mm瞳孔直徑下..4階球差對眼睛度數的影響.. - 眼鏡
By Zenobia
at 2009-09-28T21:58
at 2009-09-28T21:58
Table of Contents
以下論述說明在瞳孔直徑在 6mm內時..
僅考慮2階和4階球差影響前提下..
最小模糊圓約坐落於於最大2階屈光誤差的3/4處..
當瞳孔直徑6mm時..mpmva會比理想值多出 -0.195 ± 0.24 (D)
======================================================
對於4階球差致使之2階屈光誤差..
#像差,像點位移誤差,屈光度誤差展開式互換推導
http://www.wretch.cc/blog/kramnik1/13622399
我們令2階屈光誤差為ΔF..2階焦距誤差為Δf..
r為光束與折射面交點與光學中心垂直之間距..
f(eye)為眼軸長..F(eye)為眼球總屈光度..a,b為比例常數..
則
ΔF = a*r^2
Δf = -(a*r^2)*[f(eye)/F(eye)]
= -b*r^2
設R為模糊圓半徑..模糊圓擷取處為與0階屈光誤差為0處距離為ΔS..
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078602&p=3
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078603&p=4
R = r*[f(eye)-Δf]^(-1)*(Δf-ΔS) ….when ΔS <Δf
R = r*[f(eye)-Δf]^(-1)*(ΔS-Δf) ….when ΔS >Δf
==================================================================
R = r*[f(eye)-Δf]^(-1)*(Δf-ΔS) ….when ΔS <Δf
即ΔS < -b*r^2 => 0 < r <(-ΔS/b)^(1/2)
我們令ΔS為不變量..對上式之r微分..
dR/dr = [f(eye)-Δf]^(-1)*(Δf-ΔS)
+ r*(-1)* [f(eye)-Δf] ^(-2)*(2*b*r)*(Δf-ΔS)
+ r*[f(eye)-Δf]^(-1)*(-2*b*r)
= [f(eye)-Δf]^(-1)
*{(Δf-ΔS) – 2*b*r^2* [f(eye)-Δf] ^(-1)* (Δf-ΔS) -2*b*r^2} = 0
= [f(eye)-Δf]^(-1)
*{(Δf-ΔS) – 2*b*r^2* [1/f(eye)]* (Δf-ΔS) -2*b*r^2} = 0
= [f(eye)-Δf]^(-1)
*{(Δf-ΔS) + 2*Δf* [1/f(eye)]*(Δf-ΔS) + 2*Δf}
≒ [f(eye)-Δf]^(-1)* (3*Δf-ΔS )
當dR/dr = 0 時..即r =[ΔS/(-3*b)]^(1/2)
則r = [ΔS/(-3*b)]^(1/2)有極大值
Rmax = [ΔS/(-3*b)]^(1/2)*[f(eye)]^(-1)*(-2/3)*ΔS .......(a)
==========================================================================
R = r*{1/[f(eye)-Δf]}*(ΔS-Δf) ….when ΔS >Δf
即ΔS > -b*r^2 => h > r > (-ΔS/b)^(1/2)
Rmax = h*[f(eye)]^(-1)*( -b*h^2-ΔS) ......................(b)
===========================================================================
由上述推導可知
最小模糊圓(the circle of least confusion )出現在條件 (a) = (b)
[ΔS/(-3*b)]^(1/2)*[f(eye)]^(-1)*(-2/3)*ΔS
= h*[f(eye)]^(-1)*( -b*h^2-ΔS)
=> (-4/27*b)*ΔS^3 = h^2*( b^2*h^4 + 2*b*h^2*ΔS +ΔS^2 )
我們用graphmatica軟體可以跑出上式解出現在 ΔS ≒ -0.75*b*h^2 處 ........(c)
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078599&p=0
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078600&p=1
==============================================================================
telescope@ptics.net
4. INTRINSIC TELESCOPE ABERRATIONS
http://www.telescope-optics.net/spherical1.htm
此網頁給予相同的答案..
即最小模糊圓約坐落於於最大2階屈光誤差的3/4處..
最小模糊圓邊緣光線由 0.866h 處入射的光線所提供..
============================================================================
根據WAVEFRONT ABERRATION AND ITS ASSOCIATION WITH INTRAOCULAR PRESSURE ,
CENTRAL CORNEAL THICKNESS AND AXIAL LENGTH IN MYOPIC EYES by林楠
人眼瞳孔6mm內zernike分析數據
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078601&p=2
我們忽略掉其餘像差..僅考慮4th spherical aberration(Z12)..
Z12 = 0.1 ±0.12 (μm)
============================================================================
又 W(SA) = 6*(r/rmax)^4*Z12
根據像差,屈光度誤差互換式
△F(max) = -2*[δW/δ(r^2)] | r = rmax
= -24*Z12*(1/rmax)^2
= -24* (0.1±0.12)*10^(-6) * (1/0.003)^2
= -0.26 ±0.32 (D) ......................................(d)
=============================================================================
將(c)代入(d)式..
△F(the least confused) = 0.75*(-0.26 ±0.32)
= -0.195 ± 0.24 (D)
可知在瞳孔直徑6mm時..mpmva會比理想值多出 -0.195 ± 0.24 (D)
=============================================================================
由於人眼在暗室瞳孔直徑有可能比6mm還要大..
需要瞳孔大於6mm的zernike分析數據..
然而當瞳孔大於6mm時..其餘高階像差的影響比例可能會大幅增加..
單單計算4th-order spherical aberration的影響可能不夠貼近實際值..
--
僅考慮2階和4階球差影響前提下..
最小模糊圓約坐落於於最大2階屈光誤差的3/4處..
當瞳孔直徑6mm時..mpmva會比理想值多出 -0.195 ± 0.24 (D)
======================================================
對於4階球差致使之2階屈光誤差..
#像差,像點位移誤差,屈光度誤差展開式互換推導
http://www.wretch.cc/blog/kramnik1/13622399
我們令2階屈光誤差為ΔF..2階焦距誤差為Δf..
r為光束與折射面交點與光學中心垂直之間距..
f(eye)為眼軸長..F(eye)為眼球總屈光度..a,b為比例常數..
則
ΔF = a*r^2
Δf = -(a*r^2)*[f(eye)/F(eye)]
= -b*r^2
設R為模糊圓半徑..模糊圓擷取處為與0階屈光誤差為0處距離為ΔS..
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078602&p=3
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078603&p=4
R = r*[f(eye)-Δf]^(-1)*(Δf-ΔS) ….when ΔS <Δf
R = r*[f(eye)-Δf]^(-1)*(ΔS-Δf) ….when ΔS >Δf
==================================================================
R = r*[f(eye)-Δf]^(-1)*(Δf-ΔS) ….when ΔS <Δf
即ΔS < -b*r^2 => 0 < r <(-ΔS/b)^(1/2)
我們令ΔS為不變量..對上式之r微分..
dR/dr = [f(eye)-Δf]^(-1)*(Δf-ΔS)
+ r*(-1)* [f(eye)-Δf] ^(-2)*(2*b*r)*(Δf-ΔS)
+ r*[f(eye)-Δf]^(-1)*(-2*b*r)
= [f(eye)-Δf]^(-1)
*{(Δf-ΔS) – 2*b*r^2* [f(eye)-Δf] ^(-1)* (Δf-ΔS) -2*b*r^2} = 0
= [f(eye)-Δf]^(-1)
*{(Δf-ΔS) – 2*b*r^2* [1/f(eye)]* (Δf-ΔS) -2*b*r^2} = 0
= [f(eye)-Δf]^(-1)
*{(Δf-ΔS) + 2*Δf* [1/f(eye)]*(Δf-ΔS) + 2*Δf}
≒ [f(eye)-Δf]^(-1)* (3*Δf-ΔS )
當dR/dr = 0 時..即r =[ΔS/(-3*b)]^(1/2)
則r = [ΔS/(-3*b)]^(1/2)有極大值
Rmax = [ΔS/(-3*b)]^(1/2)*[f(eye)]^(-1)*(-2/3)*ΔS .......(a)
==========================================================================
R = r*{1/[f(eye)-Δf]}*(ΔS-Δf) ….when ΔS >Δf
即ΔS > -b*r^2 => h > r > (-ΔS/b)^(1/2)
Rmax = h*[f(eye)]^(-1)*( -b*h^2-ΔS) ......................(b)
===========================================================================
由上述推導可知
最小模糊圓(the circle of least confusion )出現在條件 (a) = (b)
[ΔS/(-3*b)]^(1/2)*[f(eye)]^(-1)*(-2/3)*ΔS
= h*[f(eye)]^(-1)*( -b*h^2-ΔS)
=> (-4/27*b)*ΔS^3 = h^2*( b^2*h^4 + 2*b*h^2*ΔS +ΔS^2 )
我們用graphmatica軟體可以跑出上式解出現在 ΔS ≒ -0.75*b*h^2 處 ........(c)
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078599&p=0
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078600&p=1
==============================================================================
telescope@ptics.net
4. INTRINSIC TELESCOPE ABERRATIONS
http://www.telescope-optics.net/spherical1.htm
此網頁給予相同的答案..
即最小模糊圓約坐落於於最大2階屈光誤差的3/4處..
最小模糊圓邊緣光線由 0.866h 處入射的光線所提供..
============================================================================
根據WAVEFRONT ABERRATION AND ITS ASSOCIATION WITH INTRAOCULAR PRESSURE ,
CENTRAL CORNEAL THICKNESS AND AXIAL LENGTH IN MYOPIC EYES by林楠
人眼瞳孔6mm內zernike分析數據
http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078601&p=2
我們忽略掉其餘像差..僅考慮4th spherical aberration(Z12)..
Z12 = 0.1 ±0.12 (μm)
============================================================================
又 W(SA) = 6*(r/rmax)^4*Z12
根據像差,屈光度誤差互換式
△F(max) = -2*[δW/δ(r^2)] | r = rmax
= -24*Z12*(1/rmax)^2
= -24* (0.1±0.12)*10^(-6) * (1/0.003)^2
= -0.26 ±0.32 (D) ......................................(d)
=============================================================================
將(c)代入(d)式..
△F(the least confused) = 0.75*(-0.26 ±0.32)
= -0.195 ± 0.24 (D)
可知在瞳孔直徑6mm時..mpmva會比理想值多出 -0.195 ± 0.24 (D)
=============================================================================
由於人眼在暗室瞳孔直徑有可能比6mm還要大..
需要瞳孔大於6mm的zernike分析數據..
然而當瞳孔大於6mm時..其餘高階像差的影響比例可能會大幅增加..
單單計算4th-order spherical aberration的影響可能不夠貼近實際值..
--
Tags:
眼鏡
All Comments
By Andrew
at 2009-10-03T05:10
at 2009-10-03T05:10
By Quanna
at 2009-10-05T01:25
at 2009-10-05T01:25
By Jessica
at 2009-10-05T21:26
at 2009-10-05T21:26
By Kristin
at 2009-10-07T15:42
at 2009-10-07T15:42
By Aaliyah
at 2009-10-08T00:05
at 2009-10-08T00:05
By Jack
at 2009-10-12T18:55
at 2009-10-12T18:55
By Barb Cronin
at 2009-10-16T00:26
at 2009-10-16T00:26
Related Posts
不推 師大路上的 神采飛揚
By John
at 2009-09-28T08:04
at 2009-09-28T08:04
Re: 【反推薦】公館聚典
By Kyle
at 2009-09-28T00:45
at 2009-09-28T00:45
請問台北哪有賣前掛式偏光太陽眼鏡?
By Susan
at 2009-09-27T22:06
at 2009-09-27T22:06
戴賽路路鏡框有些地方要特別注意嗎?
By Connor
at 2009-09-27T21:58
at 2009-09-27T21:58
男生配黑框眼鏡
By Lily
at 2009-09-27T20:34
at 2009-09-27T20:34